青岛科技大学

二〇一七年硕士研究生入学考试试题 1

考试科目: 高等代数

- 注意事项: 1. 本试卷共 10 道大题 (共计 11 个小题), 满分 150 分:
 - 2. 本卷属试题卷,答题另有答题卷,答案一律写在答题卷上,写在该试题卷上或草纸上均无效。要注意试卷清洁,不要在试卷上涂划;
 - 3. 必须用蓝、黑钢笔或签字笔答题, 其它均无效。

- 一、(15 分)证明:如果(f(x),g(x))=1,(f(x),h(x))=1,那么(f(x),g(x)h(x))=1。
- 二、(15分) 计算n阶行列式的值(其中 $a_i \neq 0, i = 1, 2, ..., n$):

$$D = \begin{vmatrix} 1+a_1 & 1 & 1 & \dots & 1 & 1 \\ 1 & 1+a_2 & 1 & \dots & 1 & 1 \\ 1 & 1 & 1+a_3 & \dots & 1 & 1 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & \dots & 1 & 1+a_n \end{vmatrix}$$

三、(15 分) 给定线性方程组 $\begin{cases} ax_1+x_2+x_3=1\\ x_1+ax_2+x_3=1 \end{cases}$,讨论当 a 取何值时,方程组有唯一解、无解、 $x_1+x_2+ax_3=-2$

有无穷多解?并在有无穷多解时求出通解.

- 四、(15 分) 求实二次型 $f(x_1,x_2,x_3) = -4x_1x_2 + 2x_1x_3 + 2x_2x_3$ 的秩、正惯性指数和负惯性指数。
- 五、(20 分) 证明: 如果 $A \in n \times n$ 矩阵 $(n \ge 2)$, 那么

$$rank(A^*) = \begin{cases} n, & \stackrel{\square}{\Rightarrow} rank(A) = n \\ 1, & \stackrel{\square}{\Rightarrow} rank(A) = n - 1 \\ 0, & \stackrel{\square}{\Rightarrow} rank(A) < n - 1 \end{cases}$$

六、 $(20\, \text{分})$ 设 A 是数域 P 上 6 阶矩阵,行列式因子为: $D_6(\lambda) = (\lambda+1)^3(\lambda-2)^2(\lambda+3)$,

$$D_5(\lambda) = (\lambda + 1)(\lambda - 2), D_1(\lambda) = D_2(\lambda) = D_3(\lambda) = D_4(\lambda) = 1$$

- (1) 求A的所有不变因子;
- (2) 写出 A 的 Jordan 标准形。
- 七、 $(25\,
 m 分)$ 设 σ 是数域P 上线性空间V 的一个线性变换,若有 $\alpha \in V$ 使得 $\sigma^{k-1}(\alpha) \neq 0$,但 $\sigma^k(\alpha) = 0$,这里 $k = \dim V$ 。证明:
 - (1) α , $\sigma(\alpha)$,..., $\sigma^{k-1}(\alpha)$ 线性无关;
 - (2) 存在V的一组基,使得 σ 在该组基下的矩阵为 $\begin{pmatrix} 0 & 0 & ... & 0 & 0 \\ 1 & 0 & ... & 0 & 0 \\ 0 & 1 & ... & 0 & 0 \\ ... & ... & ... & ... & ... \\ 0 & 0 & ... & 1 & 0 \end{pmatrix}_{k \times k}$

八、 $(25 \, \text{分})$ 设V 是复数域上的n 维线性空间, σ 和 τ 是V 上的线性变换。

- (1) 证明 $\sigma(V) \subset \sigma^{-1}(0)$ 当且仅当 $\sigma^2 = 0$ 。
- (2) 若 $\sigma\tau=\tau\sigma$,证明:如果 λ_0 是 σ 的一个特征值,那么 V_{λ_0} 是 τ 的不变子空间;并且 σ 和 τ 至少有一个公共的特征向量。

第2页(共2页)